Coenzyme Q regulates the expression of essential genes of the pathogen- and xenobiotic-associated defense pathway in C. elegans
نویسندگان
چکیده
Coenzyme Q (CoQ) is necessary for mitochondrial energy production and modulates the expression of genes that are important for inflammatory processes, growth and detoxification reactions. A cellular surveillance-activated detoxification and defenses (cSADDs) pathway has been recently identified in C. elegans. The down-regulation of the components of the cSADDs pathway initiates an aversion behavior of the nematode. Here we hypothesized that CoQ regulates genes of the cSADDs pathway. To verify this we generated CoQ-deficient worms ("CoQ-free") and performed whole-genome expression profiling. We found about 30% (120 genes) of the cSADDs pathway genes were differentially regulated under CoQ-deficient condition. Remarkably, 83% of these genes were down-regulated. The majority of the CoQ-sensitive cSADDs pathway genes encode for proteins involved in larval development (enrichment score (ES) = 38.0, p = 5.0E(-37)), aminoacyl-tRNA biosynthesis, proteasome function (ES 8.2, p = 5.9E(-31)) and mitochondria function (ES 3.4, p = 1.7E(-5)). 67% (80 genes) of these genes are categorized as lethal. Thus it is shown for the first time that CoQ regulates a substantial number of essential genes that function in the evolutionary conserved cellular surveillance-activated detoxification and defenses pathway in C. elegans.
منابع مشابه
P-159: Immunological Aspect of Ectopic Pregnancy Genes
Background: Toll-like receptors (TLRs) play a crucial role in early host defense against invading pathogens. Recognition of some bacterial pathogen associated molecular patterns (PAMPs) is mediated by TLR2, 4 and 5 while TLR3 distinguishes double stranded RNA. Interactions between the immune system and female reproductive system have important consequences for fertility and reproductive health....
متن کاملTranscript analysis of some defense genes of tomato in response to host and non-host bacterial pathogens
The transcript levels of six defense genes including pathogenesis-related gene 1 (PR-1), pathogenesis-related gene 2 (PR-2), pathogenesis-related gene 5 (PR-5), lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL) and catalase (CAT) were investigated in tomato plants inoculated with Xanthomonas axonopodis pv. phaseoli as a non-host pathogen and X. euvesicatoria as a host pathogen. Activation o...
متن کاملmiR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کاملPrediction of MicroRNAs bind to Toll-like Receptors Pathway in Chicken based on Bioinformatics Method
Background: Toll-like receptors (TLRs) detect diverse pathogen-associated molecular patterns and play a critical role in the innate immune response. Hosts should activate TLR-signaling pathways to eliminate invading pathogens. However, excessive activation of these pathways may interrupt immune homeostasis, leading to several diseases. Therefore precise regulation of TLR-signaling pathways is e...
متن کاملBacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants
Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...
متن کامل